METALLORGANISCHE LEWIS-SÄUREN

XXVII *. METALLORGANISCHE VERBINDUNGEN MIT ANIONEN DER FLUORSULFONSÄURE, SOWIE VON PERFLUORIERTEN SULFON-UND CARBONSÄUREN

MATHILDE APPEL, KLAUS SCHLOTER, JÜRGEN HEIDRICH und WOLFGANG BECK* Institut für Anorganische Chemie der Universität München, Meiserstr. 1, 8000 München 2 (B.R.D.) (Eingegangen den 1. Oktober 1986)

Summary

The complexes $(\eta^5-C_5H_5)(OC)_3MX$ (M = Mo, W; X = OSO₂F, OSO₂CF₃, OSO₂C₆F₁₃, OC(O)C₃F₇), (OC)₅MX (M = Mn, Re; X = OSO₂C₆F₁₃, OC(O)C₃F₇, OC(O)C₇F₁₅) are obtained from their alkyl complexes and the corresponding acid, $(\eta^5-C_5H_5)(OC)_2$ FeOC(O)C₇F₁₅ and Ph₃PAuOC(O)C₇F₁₅ are obtained from the halide compounds and AgOC(O)C₇F₁₅. The thermolabile methylene complex $[(\eta^5-C_5H_5)-(OC)_3W=CH_2]^+$ O₃SCF₃⁻ is formed by reaction of $(\eta^5-C_5H_5)(OC)_3W-CH_2OCH_3$ with Me₃SiOSO₂CF₃. It decomposes to give $(\eta^5-C_5H_5)(OC)_3WOSO_2CF_3$ as the main product.

Zusammenfassung

Die Komplexe $(\eta^5-C_5H_5)(OC)_3MX$ (M = Mo, W; X = OSO₂F, OSO₂CF₃, OSO₂C₆F₁₃, OC(O)C₃F₇), (OC)₅MX (M = Mn, Re; X = OSO₂C₆F₁₃, OC(O)C₃F₇, OC(O)C₇F₁₅) werden durch Umsetzung der Alkyl-Komplexe und der entsprechenden Säure, $(\eta^5-C_5H_5)(OC)_2$ FeOC(O)C₇F₁₅ und Ph₃PAuOC(O)C₇F₁₅ aus den Halogeno-Verbindungen und AgOC(O)C₇F₁₅ erhalten. Der thermolabile Methylen-Komplex $[(\eta^5-C_5H_5)(OC)_3W=CH_2]^+O_3SCF_3$ bildet sich aus $(\eta^5-C_5H_5)(OC)_3WCH_2OCH_3$ mit Me₃SiOSO₂CF₃ und zersetzt sich unter Bildung von $(\eta^5-C_5H_5)(OC)_3WOSO_2CF_3$ als Hauptprodukt.

Einleitung

In Fortführung unserer Arbeiten über metallorganische Verbindungen mit schwach koordinierten Anionen werden im folgenden einige Komplexe mit Anionen

0022-328X/87/\$03.50 © 1987 Elsevier Sequoia S.A.

^{*} XXVI. Mitteilung siehe Ref. 1.

der Fluorschwefelsäure und von perfluorierten Alkansulfon- und -carbonsäuren vorgestellt. Komplexe mit koordiniertem Fluorosulfat, Trifluormethansulfonat und Trifluormethancarboxylat wurden in Übersichtsartikeln zusammengefasst [2]. King und Kapoor erhielten über die Halogenid-Abstraktion mit $C_nF_{2n+1}CO_2Ag$ aus Halogeno-Komplexen eine grosse Zahl von Verbindungen mit koordiniertem Carboxylat [3]. Die Protonierung von Übergangsmetallmethylverbindungen des Typs L_nMCH_3 ($L_n = \eta^5 \cdot C_5H_5$, CO) stellt einen bewährten Syntheseweg für Metallsulfonate und -carboxylate dar. Dies wurde von Wilkinson [4] et al. bereits 1962 beschrieben, und von verschiedenen Arbeitskreisen [5-7] als Darstellungsmethode herangezogen.

Mechanistische Untersuchungen über die Umsetzung von $(\eta^5-C_5H_5)(OC)_2$ Fe-Alkyl mit CF₃C(O)OH liegen von Wojcicki et al. vor [8]. Perfluoralkancarboxylate und -sulfonate finden als ein- und zweizähnige Liganden viel Interesse.

Siedle et al. setzten neben $C_8F_{17}SO_3H$ bevorzugt die CH- und NH-aciden Verbindungen $(CF_3SO_2)_2CH_2$, $(CF_3SO_2)_2CHPh$ und $(CF_3SO_2)_2NH$ ein [9].

Umsetzungen von Alkyl-Komplexen mit Säuren

Die Verbindungen 1–12 entstehen durch Reaktion der entsprechenden Alkyl-Komplexe mit der Säure HX (FSO₃H, CF₃SO₃H, C₆F₁₃SO₃H, C₃F₇CO₂H, C₇F₁₅CO₂H) unter Alkan-Eliminierung in Methylenchlorid:

$$L_nMR + HX \rightarrow L_nMX + HR$$

$$(R = Me, Et)$$

$$(\pi^{5}-C_{5}H_{5})(OC)_{3}MoOSO_{2}F (1)$$

$$(\pi^{5}-C_{5}H_{5})(OC)_{3}WOSO_{2}F (2)$$

$$(\pi^{5}-C_{5}H_{5})(OC)_{3}MoOSO_{2}CF_{3} (3)$$

$$(\pi^{5}-C_{5}H_{5})(OC)_{3}WOSO_{2}CF_{3} (4)$$

$$(\pi^{5}-C_{5}H_{5})(OC)_{3}MoOSO_{2}C_{6}F_{13} (5)$$

$$(\pi^{5}-C_{5}H_{5})(OC)_{3}WOSO_{2}C_{6}F_{13} (6)$$

$$(\pi^{5}-C_{5}H_{5})(OC)_{3}MoOC(O)C_{3}H_{7} (7)$$

$$(\pi^{5}-C_{5}H_{5})(OC)_{3}WOC(O)C_{3}F_{7} (8)$$

$$(OC)_{5}ReOSO_{2}C_{6}F_{13} (10)$$

$$(OC)_{5}ReOC(O)C_{3}F_{7} (11)$$

$$(OC)_{5}ReOC(O)C_{7}F_{15} (12)$$

Die zu 7 und 8 analogen W- und Mo-Verbindungen mit koordiniertem $OC(O)C_7F_{15}$ -Liganden konnten durch obige Reaktion nicht analysenrein erhalten werden.

Die Komplexe 13 und 14 lassen sich, wie auch 12, durch Abstraktion des

TABELLE 1

Verbindung	$\nu_{as}(SO_3)(E)$			$\nu_s(SO_3)A_1$
	Ā"	A' ¹		A' ²
FSO ₃ Ag [33]	12	282		1057
$(\eta^{5}-C_{5}H_{5})(OC)_{3}MoOSO_{2}F(1)$	1341	1218		1038
$(\eta^{5}-C_{5}H_{5})(OC)_{3}WOSO_{2}F(2)$	1354	1212		1030
F ₃ CSO ₃ Na [16]	12	280		1035
$(\eta^{5}-C_{5}H_{5})(OC)_{3}MOOSO_{2}CF_{3}$ (3)	1320	1198		1005
$(\eta^{5}-C_{5}H_{5})(OC)_{3}WOSO_{2}CF_{3}$ (4)	1328	1205		1010
$(\eta^{5}-C_{5}H_{5})(OC)_{3}MOOSO_{2}C_{6}F_{13}$ (5)	1330	-		1015
$(\eta^{5}-C_{5}H_{5})(OC)_{3}WOSO_{2}C_{6}F_{13}$ (6)	1330			1010
$(OC)_5 MnOSO_2C_6F_{13}$ (9)	1328	-	(1075)	1022
$(OC)_{5}ReOSO_{2}C_{6}F_{13}$ (10)	1328	. –	, ,	1010

 $\nu(SO_3)\text{-}ABSORPTIONEN$ DER KOORDINIERTEN SO_3F⁻, SO_3CF_3⁻-ANIONEN IN 1–6 (in Nujol, in cm⁻¹)

Halogenids aus $(OC)_5$ ReBr, $(\eta^5-C_5H_5)(OC)_2$ FeI bzw. Ph₃PAuCl mit dem Silbersalz der perfluorierten Octansäure erhalten.

 $(\eta^{5}-C_{5}H_{5})(OC)_{2}FeOC(O)C_{7}F_{15}$ (13) Ph₃PAuOC(O)C₇F₁₅ (14)

Die Komplexe $(OC)_5MnOC(O)CF_3$ [10], $(OC)_5MOSO_2CF_3$ [11] sowie $(OC)_5MOSO_2F$ [12] (M = Mn, Re) wurden bereits beschrieben. Phosphan-haltige Verbindungen des Typs $(\eta^5-C_5H_5)(OC)_2(R_3P)MOSO_2CF_3$ (M = Mo, W), $(\eta^5-C_5H_5)(OC)(R_3P)MOSO_2CF_3$ (M = Fe, Ru) wurden kürzlich von Malisch et al. nach verschiedenen Methoden dargestellt [6]. Die zu 13 und 14 analogen Trifluoracetate sind bekannt [3,13]. 4 bildet sich auch bei der Disproportionierung des Methylen-Komplexes 15 (vgl. unten).

Die Koordination von SO_3F^- und $SO_3CF_3^-$ an das Metall in 1-4 lässt sich eindeutig aus dem IR-Spektrum durch die Aufspaltung der $\nu(SO_3)$ -Banden entnehmen (vergl. Tab. 1). In den Komplexen 5,6 und 9,10 ist nur die A"-Bande bei grösseren Wellenzahlen eindeutig zu identifizieren. Für 3,4 liegen auch massenspektroskopische Beweise vor. Allerdings konnten die Molekülpeaks nicht beobachtet werden.

Die antisymmetrischen $\nu(CO_2)$ -Valenzschwingungen (Tab. 2) in **7,8,11,12** sind im Vergleich zu den freien Säuren um 75-80 cm⁻¹ nach tieferen Wellenzahlen verschoben. Die Grösse der Differenz $\Delta = \nu_{as}(CO_2) - \nu_s(CO_2)$ in **11** und **12** von 300 (**11**) bzw. 325 cm⁻¹ (**12**) kann nach Untersuchungen von Deacon und Phillips [2b]

TABELLE 2

 $\nu_{as}(\rm CO_2)\text{-}ABSORPTIONEN$ DER KOORDINIERTEN CARBOXYLATANIONEN IN 7–14 (in Nujol, in cm $^{-1}$)

7	1695	12	1700	
8	1695	13	1700	
11	1690, 1670sh	14	1700	

TABELLE 3

		δ(C ₅ H ₅) (ppm)	· · · · · ·
$(\eta^5 - C_5 H_5)(OC)_3 MoX$			
FBF3		5.98 ^a	
OSO ₂ F	(1)	5.88 ^a	
OSO ₂ CF ₃	(3)	5.85 ^b	
$OSO_2C_6F_{13}$	(5)	5.86 ^b	
$OC(O)C_3F_7$	(7)	5.68 ^b	
CI	.,	5.62 ^b	
$(\eta^5 - C_5 H_5)(OC)_3 WX$			
FBF ₃		6.11 ^a	
OSO ₂ F	(2)	6.00 ^a	
OSO ₂ CF ₃	(4)	5.96 ^b	
OSO ₂ C ₆ F ₁₃	(6)	5.98 ^b	
$OC(O)C_{3}F_{7}$	(8)	5.80 ^b	
CI		5.77 ^b	
$(\eta^5 - C_5 H_5)(OC)_2 FeX$			
FBF ₃ [34]		5.26 ^b	
$OC(O)C_{3}F_{7}[3]$		5.02 ^b	
$OC(O)C_7F_{15}$	(13)	5.06 ^b	
CI	``'	5.03 ^b	

¹H-NMR-DATEN VERSCHIEDENER KOMPLEXE MIT SCHWACH-KOORDINIERTEN ANIONEN

^a In CD₂Cl₂ (5.33). ^b In CDCl₃ (7.24).

an Trifluoracetat-Komplexen als Hinweis für eine einzähnige Koordination gelten.

Durch Protonierung der Methylverbindungen $(\eta^5-C_5H_5)(OC)_3MCH_3$ (M = Mo, W) in Methylenchlorid mit HBF₄ · OEt₂ sind auch die Tetrafluoroboratokomplexe $(\eta^5-C_5H_5)(OC)_3MFBF_3$ zugänglich. Diese Methode wurde für in situ erzeugte metallorganische Lewis-Säuren bereits mehrmals eingesetzt [14]. Zur Isolierung von $(OC)_5MFBF_3$ (M = Mn, Re) ist dieser Weg besonders geeignet [15].

Die Lage der Cyclopentadienyl-Protonen-Signale im ¹H-NMR-Spektrum in den Komplexen 1-8 und 13 gibt Aufschluss über die unterschiedliche Koordinationsstärke der verschiedenen Anionen (Tab. 3). Das Metallcarbonylfragment, d.h. die metallorganische Lewis-Säure, besitzt umso stärker kationischen Charakter je schwächer das Anion koordiniert ist, was sich in einer Tieffeld-Verschiebung des C_5H_5 -¹H-NMR-Signals, d.h. zunehmender Entschirmung der C_5H_5 -Protonen, äussert. In Übereinstimmung mit dem chemischen Verhalten dieser Komplexe ergibt sich folgende Abstufung der Koordinationsstärke des Anions: $BF_4^- < SO_3F^- \sim SO_3CF_3^- \sim SO_3C_6F_{13}^- < O_2CC_3F_7^- \sim O_2CC_7F_{15}^- < Cl^-$.

Eine ähnliche Abstufung fanden Byington und Bull [16] aus den Ligandenfeldparametern der Komplexe des Typs $M(Pyridin)_4 X_2$ (M = Co, Ni).

Darstellung und Reaktionen des Methylen-Komplexes $[(\eta^5-C_5H_5)(OC)_3W=CH_2]^+O_3SCF_3^-$

Wie bereits kurz berichtet [17], entsteht der Methylen-Komplex 15 durch Abstraktion der Methoxy-Gruppe aus $(\eta^5-C_5H_5)(OC)_3WCH_2OMe$ mit Trimethylsilyltrifluormethansulfonat bei tiefen Temperaturen:

$$(\eta^{5}-C_{5}H_{5})(OC)_{3}WCH_{2}OMe \xrightarrow{+Me_{3}SiOSO_{2}CF_{3}; -Me_{3}SiOMe}_{-28^{\circ}C, Pentan} [(\eta^{5}-C_{5}H_{5})(OC)_{3}W=CH_{2}]^{+}O_{3}SCF_{3}^{-1}$$
(15)

15 fällt als feinpulveriger, hellgelber Niederschlag aus und ist eine äusserst reaktive Substanz, die sich in fester Form ab -20°C, in allen Lösungsmitteln schon bei -80°C spontan zersetzt. Folgende Befunde sprechen für die Formulierung von 15 als kationische Methylen-Spezies:

1. Der bei der Synthese gebildete Trimethylsilylmethylether wurde ¹H-NMRspektroskopisch nachgewiesen. Ein Vergleich der Intensitäten der CH₃-Signale mit denen einer Lösung von Me₃SiOMe von bekannter Konzentration in n-Pentan ergab, dass bei der Umsetzung die stöchiometrische Menge Me₃SiOMe entsteht (Genauigkeit $\pm 10\%$).

2. Eine Reihe von kationischen Methylen-Komplexen, zunächst als Zwischenstufen angenommen [18], konnte inzwischen eingehend charakterisiert und auch isoliert werden [19-22], z.B. $[(\eta^5-C_5H_5)L_2Fe=CH_2]^+$, $[(\eta^5-C_5Me_5)(OC)_2Fe=CH_2]^+$, $[(\eta^5-C_5H_5)(ON)(Ph_3P)Re=CH_2]^+$. 15 ist ebenso thermolabil wie der entsprechende Molybdän-Komplex $[(\eta^5-C_5H_5)(OC)_3Mo=CH_2)^+$ [18b,20,21]. Die zu 15 analogen phosphan-haltigen Komplexe $[(\eta^5-C_5H_5)(OC)_2(R_3P)M=CH_2]^+$ (M = Mo, W) [20] sind stabiler als 15. 15 disproportioniert im festen Zustand unter n-Pentan sowie in Lösung (CH₂Cl₂, Aceton) gemäss

$$2 \cdot 15 \rightarrow \left[\left(\eta^{5} - C_{5}H_{5} \right) (OC)_{3}W(C_{2}H_{4}) \right]^{+} O_{3}SCF_{3}^{-} + \left(\eta^{5} - C_{5}H_{5} \right) (OC)_{3}WOSO_{2}CF_{3}$$
(4)

Diese Disproportionierung entsprechend

$$2[L_n M = CH_2]^+ X^- \rightarrow [L_n M (C_2 H_4)]^+ + L_n M X$$

ist charakteristisch für kationische Methylen-Komplexe [18-22]; für diese Reaktion wurde ein Bis(methylen)- bzw. Ethylen-verbrückter zweikerniger Komplex als Zwischenstufe vorgeschlagen [21b,23]. Auch aus neutralen Fischer-Carben-Komplexen entstehen bei der Zersetzung häufig die entsprechenden Alkene [24].

Die Sulfonato-Komplexe (η^{5} -C₅Me₅)(OC)LFeOSO₂CF₃ (L = CO, PR₃) wurden ebenfalls über die Methylen-Verbindungen [(η^{5} -C₅Me₅)(OC)LFeCH₂]⁺O₃SCF₃⁻ dargestellt [7,21,22,25]. Bei der Zersetzung von 15 treten kleinere Mengen von [(η^{5} -C₅H₅)W(CO)₄]⁺O₃SCF₃⁻ und (η^{5} -C₅H₅)(OC)₃WCH₃ auf. Das Tetracarbonyl-Kation bildet sich durch eine CO-Übertragung an 4 [26]. Der Methyl-Komplex kann durch eine Hydrid-Übertragung (aus Lösungsmittel, einem organischen Liganden oder einem Wolframhydrid) an 15 entstehen.

3. Schliesslich lässt sich Triethylamin quantitativ an den elektrophilen Methylen-Liganden in 15 unter Bildung des stabilen Ammonium-Ylid-Komplexes 16 addieren.

$$\left[\left(\eta^{5}-C_{5}H_{5}\right)(OC)_{3}W-CH_{2}NEt_{3}\right]^{+}O_{3}SCF_{3}^{-}$$
(16)

Bei einer analogen Umsetzung von $[(\eta^5-C_5H_5)(OC)_2Fe=CH_2]^+$ mit Ammoniak in

der Gasphase wurde die Bildung von $[(\eta^5-C_5H_5)(OC)_2FeCH_2NH_3]^+$ beobachtet [27]. Die relativ niedrigen $\delta(C_5H_5)$ - und $\nu(CO)$ -Werte im ¹H-NMR- bzw. IR-Spektrum (vgl. Experimenteller Teil) beweisen, dass in **16** die positive Ladung nicht am Wolfram-Atom sondern an der Ammoniumgruppe lokalisiert ist [28]. Im Vergleich zu Phosphonium-Ylid-Komplexen [29], wie z.B. die zu **16** P-analoge Verbindung $[\eta^5-C_5H_5)(OC)_3WCH_2PPh_3]^+Cl^-$ [30], wurden bisher nur verhältnismässig wenig Ammonium-Ylid-Systeme $L_nMCH_2NR_3$ beschrieben [31,32].

Experimenteller Teil

TABELLE 4

Alle Umsetzungen wurden unter Argon in absolutierten Lösungsmitteln durchgeführt.

Die Übergangsmetallalkyle und -halogenide $(\eta^5-C_5H_5)(OC)_3MoCH_3$ [35,36], $(\eta^5-C_5H_5)(OC)_3WCH_3$ [36], $(\eta^5-C_5H_5)(OC)_3WC_2H_5$ [37], $(OC)_5MnCH_3$ [38], $(OC)_5ReCH_3$ [39], $(OC)_5ReBr$ [40], $(\eta^5-C_5H_5)(OC)_2FeI$ [40] und Ph₃PAuCl [41] wurden nach Literaturvorschriften dargestellt. Die perfluorierten Säuren $C_6F_{13}SO_3H$, $C_3F_7CO_2H$ und $C_7F_{15}CO_2H$ wurden freundlicherweise von der Fa. Hoechst AG, Werk Gendorf, zur Verfügung gestellt. FSO₃H und CF₃SO₃H wurden von der Fa. Fluka, Neu-Ulm bezogen. $C_7F_{15}CO_2Ag$ wurde aus $C_7F_{15}CO_2H$ und Ag₂CO₃ synthetisiert [42]. IR- und analytische Daten siehe Tab. 4 und Tab. 5.

 $(\eta^5 - C_5 H_5)(OC)_3 MOSO_2 F (1: M = Mo; 2: M = W)$

Zu einer Lösung von 0.300 g (1.15 mmol) (η^{5} -C₅H₅)(OC)₃MoCH₃ bzw. 0.255 g (0.70 mmol) (η^{5} -C₅H₅)(OC)₃WC₂H₅ in 10 ml CH₂Cl₂ werden 0.07 ml (1.15 mmol) bzw. 0.04 ml (0.70 mmol) FSO₃H gegeben. Die Lösung färbt sich sofort dunkelrot und es tritt Gasentwicklung (Alkan) ein. Nach 20 min Rühren bei Raumtemperatur wird die Lösung filtriert und das Produkt mit 20 ml n-Pentan ausgefällt. Es wird dreimal mit je 6 ml n-Pentan gewaschen und anschliessend 4 h i.Hochvak. getrocknet. Ausbeuten: 1 0.385 g (97%); 2 0.432 g (87%).

 $(\eta^{5}-C_{5}H_{5})(OC)_{3}MOSO_{2}CF_{3}$ (3: M = Mo; 4: M = W)

Zur gelben CH_2Cl_2 -Lösung von 0.38 g (1.46 mmol) (η^5 -C₅H₅)(OC)₃MoCH₃ bzw. von 0.29 g (0.83 mmol) (η^5 -C₅H₅)(OC)₃WCH₃ werden bei RT stöchiometrische

1	2065, 1987, 1958	
2	2060, 1975, 1953	
3	2073, 1995, 1962	
4	2067, 1982, 1945	
5	2065, 1985	
6	2055, 1985, 1955, 1940	
7	2060, 1985, 1955	
8	2058, 1975, 1945	
9	2160, 2108, 2060, 2032	
10	2162, 2100, 2042, 2000sh, 1958	
11	2160, 2095, 2040, 1990	
12	2160, 2095, 2040, 1985	
13	2060, 2000 (sh 2020, 1985, 1965)	

 ν (CO)-ABSORPTIONEN DER VERBINDUNGEN 1-13 (in Nujol, in cm⁻¹)

Nr.	Summenformel	Molmasse	Gef. (ber.) (%)		
			C	Н	
1	C ₈ H ₅ FO ₆ MoS	344.1	27.04	2.02	
			(27.92)	(1.47)	
2	C ₈ H ₅ FO ₆ WS	432.0	22.18	1.53	
			(22.24)	(1.17)	
3	C ₉ H ₅ F ₃ MoO ₆ S	394.1	25.93	1.67	
			(27.42)	(1.28)	
			27.56	1.58	
4	C ₉ H ₅ F ₃ O ₆ SW	482.0	22.88	1.46	
			(22.42)	(1.05)	
			23.23	1.33	
5	C14H5F13M0O6S	644.2	25.21	0.63	
			(26.10)	(0.78)	
6	C ₁₄ H ₅ F ₁₃ O ₆ SW	732.1	22.59	0.94	
			(22.97)	(0.69)	
7	$C_{12}H_5F_7M_0O_5$	458.1	30.83	1.22	
			(31.46)	(1.10)	
8	C ₁₂ H ₅ F ₇ O ₅ W	546.0	25.73	1.06	
			(26.40)	(0.92)	
9	$C_{11}F_{13}MnO_8S$	594.1	21.20	0.19	
			(22.42)	(0.00)	
10	C ₁₁ F ₁₃ O ₈ ReS	725.4	18.26	0.37	
			(18.21)	(0.00)	
11	C ₉ F ₇ O ₇ Re	539.3	19.48	0.08	
			(20.04)	(0.00)	
12	$C_{13}F_{15}O_7Re$	739.3	20.95	0.16	
			(21.12)	(0.00)	
			20.92	0.20	
13	C ₁₅ H ₅ F ₁₅ FeO ₄	590.0	30.10	1.16	
			(30.53)	(0.85)	
14	C ₂₆ H ₁₅ AuF ₁₅ O ₂ P	872.3	36.48	2.20	
			(35.80)	(1.73)	

TABELLE 5 ANALYSEN DER SULFONATO- UND CARBOXYLATO-KOMPLEXE 1–14

Mengen von CF_3SO_3H (für M = Mo: 0.13 ml, 1.46 mmol; für M = W: 0.07 ml, 0.83 mmol) unter Rühren zugespritzt. Sofort erfolgt unter Gasentwicklung eine Rotviolettfärbung der Lösung. Nach 30–60 min wird i.Vak. bis zur Trockene eingeengt. Enthält die Rohsubstanz noch Ausgangsverbindung, kann diese unter Verwendung eines mit Trockeneis gefüllten Kühlfingers i.Hochvak. heraussublimiert werden, allerdings unter Ausbeuteverlust, weil auch 3 und 4 teilweise sublimieren. Ausbeuten: 3 0.42 g (73%); 4 0.38 g (94%).

Alternative Aufarbeitung. Man kühlt die rotgefärbten CH_2Cl_2 -Lösungen auf -25°C ab, fällt und wäscht die Produkte mit Hexan. Sind Spuren von $CF_3SO_3H \cdot nH_2O$ enthalten (farblose Festsubstanz), so können diese durch Sublimation bei RT (Ölpumpenvakuum) an einem Kühlfinger entfernt werden. Die Ausbeuten sind jedoch geringer als nach dem obigen Verfahren. 3 und 4 sind rotviolett.

Massenspektren (RT, 70 eV, 0.01 V)

Die Mo- und W-Fragmente zeigen charakteristische Isotopenmuster. Die angegebenen Massenzahlen sind auf Mo mit m = 98 und W mit m = 184 bezogen.

$(\eta^{5}-C_{5}H_{5})Mo(CO)_{n}OSO_{2}CF_{3}^{+}$		$(\eta^5 - C_5 H_5)M$	o(CO) ⁺		
n	m/z	Int.	m/z	Int.	
0	312	48	163	100	
1	340	5	191	20	
2	368	14	219	27	
3	396	0	247	24	
$\overline{(\eta^5-C_5H_5)}$)(CO) _n WOSO ₂ CF ₃ ⁺		(η ⁵ -C ₅ H ₅)W	(CO) _n ⁺	
n	m/z	Int.	m/z	Int.	
0	398	50 ·	249	48	
1	426	17	277	24	
2	454	19	305	18	
3	482	0	333	19	

 $(\eta^5 - C_5 H_5)(OC)_3 MOSO_2 C_6 F_{I3}$ (5: M = Mo; 6: M = W) und $(OC)_5 MOSO_2 C_6 F_{I3}$ (9: M = Mn; 10: M = Re)

Die wachsige Säure $C_6F_{13}SO_3H$ (frisch sublimiert) wird in 30 bis 35 ml CH_2Cl_2 vorgelegt und die entsprechende Methylverbindung in geringem Unterschuss hinzugefügt.

L _n MCH ₃ (g (mmol))		C ₆ F ₁₃ SO ₃ H (g (mmol))	
$\overline{(\eta^5 - C_5 H_5)(OC)_3 MoCH_3}$	0.22 (0.86)	0.35 (0.87)	
$(\eta^5-C_5H_5)(OC)_3WCH_3$	0.34 (0.99)	0.41 (1.01)	
(OC) ₅ MnCH ₃	0.22 (1.07)	0.43 (1.08)	
(OC) ₅ ReCH ₃	0.17 (0.5)	0.20 (0.5)	

Nach eintägigem Rühren bei RT werden die ungelösten Rückstände abzentrifugiert und die Lösungen wie folgt weiterverarbeitet: Für 9 und 10 werden sie total eingeengt; die Produkte werden i. Hochvak. gut getrocknet. Im Falle von 5 und 6 werden die Lösungen auf ca. 15 ml eingeengt und auf -68° C abgekühlt; die Produkte werden bei dieser Temperatur mit Hexan ausgefällt, mehrmals mit Hexan gewaschen und getrocknet (bei RT sind 5 und 6 sehr gut in Hexan löslich!).

Verbindung	Farbe	Ausbeute (g (%))	
5	erdbeerrot	0.39 (70)	
6	orangerot	0.48 (66)	
9	gelb	0.14 (22)	
10	farblos	0.29 (79)	

5 und 6 färben sich bei längerer Lagerung unter Argon oder in Lösung blauviolett bis blauschwarz, obwohl ihre ¹H-NMR-Signale keine Zersetzung anzeigen. Die Substanzen sind wie $C_6F_{13}SO_3H$ hygroskopisch.

 $(\eta^5 - C_5 H_5)(OC)_3 MOC(O)C_3 F_7$ (7: M = Mo; 8: M = W) und $(OC)_5 ReOC(O)C_3 F_7$ (11)

Allgemeine Arbeitsvorschrift. Die Methylverbindungen werden in 20–25 ml CH_2Cl_2 gelöst und mit stöchiometrischen Mengen flüssiger Heptafluorbuttersäure versetzt (Vorsicht! $C_3F_7CO_2H$ riecht auch in kleinen Mengen unangenehm; Abzug!).

Methylverbindungen (g (mmol))		$C_3F_7CO_2H$ (ml (mmol))
$(\eta^5 - C_5 H_5)(OC)_3 MoCH_3$	0.3 (1.15)	0.15 (1.15)
$(\eta^{5}-C_{5}H_{5})(OC)_{3}WCH_{3}$	0.37 (1.05)	0.14 (1.05)
(OC) ₅ ReCH ₃	0.34 (0.98)	0.13 (0.99)

 $(\eta^5 - C_5 H_5)(OC)_3 WOC(O)C_3 F_7$ (8). Nach dreitägigem Rühren bei RT wird die tiefrote Lösung eingeengt. Bei -20° C extrahiert man das rote Öl mit Et₂O (Rückstände werden verworfen), die orangefarbene Et₂O-Lösung wird total eingeengt und mit wenig Hexan zweimal gewaschen. Man erhält ein orangefarbenes Pulver.

7 und 8 färben sich bei längerer Lagerung unter Argon rasch dunkelbraun.

 $(OC)_5 ReOC(O)C_3F_7$ (11). Nach 1.5-tägigem Rühren engt man die Lösung bis zur Trockene ein. Bei einer Wasserbadtemperatur von 50-60°C und statischem Ölpumpenvakuum sublimieren farblose Nadeln. Ausbeute: 0.06 g (11%) an Sublimat.

 $(OC)_5 ReOC(O)C_7 F_{15}$ (12). 0.23 g (0.66 mmol) $(OC)_5 ReCH_3$ werden in 15 ml CH_2Cl_2 gelöst und mit 0.27 g (0.66 mmol) fester $C_7F_{15}CO_2H$ versetzt. Nach 2-tägigem Rühren bei RT wird die klare Lösung bis zur Trockene eingeengt. Das farblose Rohprodukt sublimiert bei 70°C Ölbadtemperatur i. Hochvak. als farblose kristalline Substanz.

Alternative Darstellung. 0.29 g (0.71 mmol) (OC)₅ReBr werden mit 0.37 g (0.71 mmol) $C_7F_{15}CO_2Ag$ in ca. 30 ml CH_2Cl_2 suspendiert und über Nacht gerührt. Nach Abfritten wird die Lösung eingeengt (starkes Schäumen) und das Produkt i.Hochvak. sublimiert. Ausbeute: 0.06 g (12%).

 $(\eta^{5}-C_{5}H_{5})(OC)_{2}FeOC(O)C_{7}F_{15}$ (13)

0.30 g (0.82 mmol) (η^5 -C₅H₅)(OC)₂FeI werden in 25 ml CH₂Cl₂ gelöst und mit 1.07 g (2.05 mmol) festem C₇F₁₅CO₂Ag versetzt. Unter Lichtausschluss wird 1 d bei RT gerührt. Nun wird die Lösung bis auf einige ml eingeengt und auf eine Säule (Laufmittel: CH₂Cl₂; *l* 10 cm; Kieselgel) übertragen. Am schnellsten wandert nicht umgesetztes (η^5 -C₅H₅)(OC)₂FeI (braun), das als erste Substanz die Säule verlässt. Anschliessend folgt eine leuchtend orange gefärbte Zone, die aufgefangen und eingeengt wird. Nicht umgesetztes Silbersalz bzw. gebildetes AgI werden auf dem Kieselgel festgehalten. Das orangefarbene Produkt wird mehrere h i.Hochvak. getrocknet. Ausbeute: 0.27 g (56%).

$Ph_{3}PAuOC(O)C_{7}F_{15}$ (14)

1.11 g (2.25 mmol) Ph₃PAuCl werden mit 1.17 g (2.25 mmol) $C_7F_{15}CO_2Ag$ in 30 ml CH_2Cl_2 suspendiert und unter Lichtausschluss 1.5 d bei RT gerührt. Die Reaktionslösung lässt man über eine Fritte, 5 cm hoch gefüllt mit ausgeheiztem Kieselgel 60, laufen und wäscht dreimal mit CH_2Cl_2 nach. Die vereinigten gelblich gefärbten Eluate werden eingeengt. Das so erhaltene Öl wird i.Hochvak. gut getrocknet. Die Verbindung ist farblos. Sie färbt sich am Licht langsam dunkel.

 $[(\eta^5 - C_5 H_5)(OC)_2 W = CH_2]^+ O_3 SCF_3^-$ (15)

Zu einer Suspension von 580 mg (1.53 mmol) ($\eta^5 \cdot C_5 \cdot H_5$)(OC)₃WCH₂OCH₃ [18b] in 10 ml CH₂Cl₂ gibt man bei -35° C unter Rühren 360 mg (0.3 ml; 1.62 mmol) Me₃SiO₃SCF₃ und lässt die Temperatur auf genau -28° C ansteigen. Im Verlauf einer Stunde entsteht ein feiner, gelber Niederschlag von 15. Man kühlt auf -40° C und dekantiert ab; das Produkt wird viermal mit je 10 ml n-Pentan von -40° C gewaschen und i.Hochvak. 3 h bei -40° C getrocknet. Ausbeute: ca. 600 mg (79%). $(\eta^{5}-C_{5}H_{5})(OC)_{3}WO_{3}SCF_{3}$ (4 aus 15)

Die feste Verbindung 15 zersetzt sich bei +20°C in wenigen min unter Bildung eines rotgelben Gemisches verschiedener Substanzen; die darin enthaltene Verbindung 4 kann durch Extraktion mit wenig CH_2Cl_2 und Überschichten der roten Lösung mit n-Pentan bei -60°C in Form dunkelroter, nadelförmiger Kristalle gewonnen werden. (Gef.: C, 22.93; H, 1.42; $C_9H_5F_3O_6SW$ ber.: C, 22.42; H, 1.05%. Molmasse 482.0) ¹H-NMR (CD_2Cl_2): δ 6.03 (C_5H_5); IR (Nujol, cm⁻¹): ν (CO) 2060, 1983, 1947; $\nu_{as}(SO_3)$ 1331, 1207; $\nu_s(SO_3)$ 1007.

Die weiteren bei der Zersetzung von 15 entstehenden bereits aus der Literatur bekannten Verbindungen $[(\eta^5-C_5H_5)(OC)_3W(C_2H_4)]^+ O_3SCF_3^- [^1H-NMR(Aceton-d_6): \delta 6.39 (s,C_5H_5); \delta 3.22 (s,C_2H_4)], [(\eta^5-C_5H_5)(OC)_4W]^+ O_3SCF_3^- [^1H-NMR(Aceton-d_6): \delta 6.64 (s,C_5H_5)] und (\eta^5-C_5H_5)(OC)_3WCH_3 [^1H-NMR(Aceton-d_6): \delta 5.65 (s,C_5H_5); \delta 0.40 (s,CH_3)] wurden spektroskopisch identifiziert.$

$[(\eta^{5}-C_{5}H_{5})(OC)_{3}WCH_{2}NEt_{3})]^{+} O_{3}SCF_{3}^{-}$ (16)

Zu einer Suspension von 450 mg (0.91 mmol) **15** in 15 ml n-Pentan gibt man bei -40° C unter Rühren 150 mg (0.2 ml; 1.48 mmol) N(C₂H₅)₃ und lässt die Temperatur langsam auf $+20^{\circ}$ C ansteigen. Es entsteht ein feinkristalliner, gelber Niederschlag von **16**. Man zentrifugiert und dekantiert ab; das Produkt wird dreimal mit je 10 ml n-Pentan gewaschen und i. Hochvak. 1 h bei $+40^{\circ}$ C getrocknet. Umkristallisieren aus CH₂Cl₂/(C₂H₅)₂O liefert 510 mg (94%) von **16**, das sich bei 137–139°C zersetzt. (Gef.: C, 32.30; H, 3.77; N, 2.23; C₁₆H₂₂F₃NO₆SW ber.: C, 32.17; H, 3.71; N, 2.35%; Molmasse 597.2) ¹H-NMR(Aceton-d₆): δ 6.00 (s,C₅H₅); 3.89 (s,WCH₂); 3.34 (q,CH₂CH₃,J 7.5 Hz); 1.36 (t,CH₂CH₃,J 7.5 Hz); IR (Nujol, cm⁻¹): ν CO): 2022, 1947, 1911; (CH₂Cl₂, cm⁻¹): ν (CO): 2029, 1951, 1918.

 $(\eta^{5}-C_{5}H_{5})(OC)_{3}MFBF_{3} (M = Mo, W)$

0.25 g (0.95 mmol) $(\eta^5-C_5H_5)(OC)_3MoCH_3$ bzw. 0.27 g (0.77 mmol) $(\eta^5-C_5H_5)(OC)_3WCH_3$ werden in ca. 20 ml CH₂Cl₂ gelöst und auf $-30^{\circ}C$ abgekühlt. Bei Zugabe stöchiometrischer Mengen HBF₄ · OEt₂ (0.13 bzw. 0.11 ml) verfärben sich die gelben Lösungen sofort über rot nach violett. Nach 30-40 min Rühren fällt und wäscht man zweimal mit Hexan und trocknet kurz bei 0°C. Die so erhaltenen Komplexe sind extrem wasserempfindlich. Ausbeuten: $(\eta^5-C_5H_5)(OC)_3MoFBF_3$: 0.22 g (70%); $(\eta^5-C_5H_5)(OC)_3WFBF_3$: 0.29 g (88%).

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gilt unser herzlicher Dank für grosszügige Förderung. Herrn. Dr. K. von Werner und der Höchst AG, Werk Gendorf, danken wir für wertvolle Chemikalien.

Literatur

¹ M. Appel und W. Beck. J. Organomet. Chem., 319 (1987) C1.

^{2 (}a) G.A. Lawrance, Chem. Rev., 86 (1986) 17 und dort zit. Lit.; (b) G.B. Deacon und R.J. Phillips, Coord. Chem. Rev., 33 (1980) 227; (c) C.D. Garner und B. Hughes, Adv. Inorg. Chem. Radiochem., 17 (1975) 1.

- 3 R.B. King und R.N. Kapoor, J. Organomet. Chem., 15 (1968) 457.
- 4 A. Davison, W. Mc.Farlane, L. Pratt und G. Wilkinson, J. Chem. Soc., (1962) 3653.
- 5 P.L. Watson und R.G. Bergman, J. Am. Chem. Soc., 101 (1979) 2055; 102 (1980) 2698.
- 6 K.-H. Griessmann, A. Stasunik, W. Angerer und W. Malisch, J. Organomet. Chem., 303 (1986) C29.
- 7 M.B. Humphrey, W.M. Lamanna, M. Brookhart und G.R. Husk, Inorg. Chem., 22 (1983) 3355.
- 8 N. de Luca und A. Wojcicki, J. Organomet. Chem., 193 (1980) 359.
- 9 A.R. Siedle, R.A. Newmark, L.H. Pignolet und R.D. Howells, J. Am. Chem. Soc., 106 (1984) 1510; A.R. Siedle, R.A. Newmark und W.B. Gleason, J. Am. Chem. Soc., 108 (1986) 767; A.R. Siedle, R.A. Newmark, L.H. Pignolet, D.X. Wang und T.A. Albright, Organometallics, 5 (1986) 38; A.R. Siedle, R.A. Newmark und L.H. Pignolet, Inorg. Chem., 25 (1986) 3412.
- 10 F.A. Cotton, D.J. Darensbourg und B.W.S. Kolthammer, Inorg. Chem., 20 (1981) 1287.
- 11 J. Nitschke, S.P. Schmidt und W.C. Trogler, Inorg. Chem., 24 (1985) 1972; W.C. Trogler, J. Am. Chem. Soc., 101 (1979) 6459.
- 12 S.P. Mallela und F. Aubke, Inorg. Chem., 24 (1985) 2969.
- 13 D.I. Nichols und A.S. Charleston, J. Chem. Soc. A, (1969) 2581.
- 14 M. Green, J. Organomet. Chem., 300 (1986) 93; Ch.C. Tso und A.R. Cutler, Organometallics, 4 (1985) 1242; T.C. Forschner und A.R. Cutler, Inorganic Syntheses, im Druck.
- 15 K. Raab und W. Beck, Chem. Ber., 117 (1984) 3169.
- 16 A.R. Byington und W.E. Bull, Inorg. Chim. Acta, 21 (1977) 239 und dort zit. Lit.
- 17 W. Beck, K. Schloter und H. Ernst, IX. Int. Conference on Organometallic Chemistry, Sept. 1979, Dijon, France, Abstract No. C53; K. Schloter, Dissertation Universität München, 1979.
- 18 (a) P.W. Jolly und R. Pettit, J. Am. Chem. Soc., 88 (1966) 5044; (b) M.L.H. Green, M. Ishaq und R.N. Whiteley, J. Chem. Soc. A, (1967) 1508.
- 19 Für repräsentative Beispiele siehe: R.R. Schrock, J. Am. Chem. Soc., 97 (1975) 6577; M. Brookhart und G.O. Nelson, J. Am. Chem. Soc., 99 (1977) 6099; W.K. Wong, W. Tam und J.A. Gladysz, J. Am. Chem. Soc., 101 (1979) 5440; M. Brookhart, J.R. Tucker, T.C. Flood und J. Jensen, J. Am. Chem. Soc., 102 (1980) 1203; S.J. Holmes und R.R. Schrock, J. Am. Chem. Soc., 103 (1981) 4599; A.R. Cutler und T. Bodnar, J. Organomet. Chem., 213 (1981) C31; A.T. Patton, Ch.E. Strouse, C.B. Knobler und J.A. Gladysz, J. Am. Chem. Soc., 105 (1983) 5804; M. Brookhart, J.R. Tucker und G.R. Husk, J. Am. Chem. Soc., 105 (1983) 258 und dort zit. Lit.
- 20 S.E. Kegley, M. Brookhart und G.R. Husk, Organometallics, 1 (1982) 760 und dort zit. Lit.
- (a) J. Markham, W. Tolman, K. Menard und A. Cutler, J. Organomet. Chem., 294 (1985) 45; (b)
 T.W. Bodnar und A.R. Cutler, Organometallics, 4 (1985) 1558 und dort zit. Lit.
- 22 V. Guerchais und D. Astruc, J. Chem. Soc., Chem. Commun., (1985) 835; V. Guerchais und C. Lapinte, ibid., (1986) 663.
- 23 Ch.P. Casey und R.L. Anderson, J. Chem. Soc., Chem. Commun., (1975) 895; R.R. Schrock, Acc. Chem. Res., 12 (1979) 98; J.H. Merrifield, G.-Yu Lin, W.A. Kiel und J.A. Gladysz, J. Am. Chem. Soc., 105 (1983) 5811; W.A. Herrmann, Adv. Organomet. Chem., 20 (1982) 160.
- 24 E.O. Fischer und D. Plabst, Chem. Ber., 107 (1974) 3326; W.A. Herrmann, B. Reiter und H. Biersack, J. Organomet. Chem., 97 (1975) 245; R.R. Schrock und P.R. Sharp, J. Am. Chem. Soc., 100 (1978) 2389; Ch.P. Casey, M.A. Andrews, D.R. McAlister, W.D. Jones und St.G. Harsy, J. Mol. Catal., 13 (1981) 43.
- 25 Vgl. auch G. Grötsch, R. Boese und W. Malisch, Chem. Ber., 119 (1986) 2367.
- 26 Vgl. W. Beck und K. Schloter, Z. Naturforsch., B, 33 (1978) 1214.
- 27 A.E. Stevens und J.L. Beauchamp, J. Am. Chem. Soc., 100 (1978) 2584.
- 28 R.B. King, Inorg. Chim. Acta, 2 (1968) 454.
- 29 H. Schmidbaur, Angew. Chem., 95 (1983) 980; Angew. Chem. Int. Ed. Engl., 22 (1983) 907; W.C. Kaska, Coord. Chem. Rev., 48 (1983) 1.
- 30 S. Pelling, Ch. Botha und J.R. Moss, J. Chem. Soc., Dalton Trans., (1983) 1495.
- 31 L. Weber in F.R. Hartley, S. Patai (Hrsg.), The Chemistry of the Metal-Carbon Bond, Wiley, Chichester, 1982, S. 91.
- 32 Beispiele für N-Ylid-Komplexe aus Metallcarbenen: F.R. Kreissl, E.O. Fischer, C.G. Kreiter und K. Weiss, Angew. Chem., 85 (1973) 617; Angew. Chem. Int. Ed. Engl., 12 (1973) 563; F.R. Kreissl und E.O. Fischer, Chem. Ber., 107 (1974) 183; W-K. Wong, W. Tam und J.A. Gladysz, J. Am. Chem. Soc., 101 (1979) 5440.
- 33 Gmelins Handbuch der Anorganischen Chemie, 8. Auflage, Silber, Teil B 3, S. 151.
- 34 W.A.G. Graham und B.M. Mattson, Inorg. Chem., 20 (1981) 3186.

- 35 W.L. Jolly, Inorg. Synth., 11 (1968) 116.
- 36 R.B. King, Organometallic Syntheses, Vol. 1, Academic Press, New York, 1965, S. 145.
- 37 T.S. Piper und G. Wilkinson, J. Inorg. Nucl. Chem., 3 (1956) 104.
- 38 W. Hieber und G. Wagner, Liebigs Ann. Chem., 618 (1958) 24.
- 39 W. Hieber und G. Braun, Z. Naturforsch. B, 14 (1959) 132; W. Hieber, G. Braun und W. Beck, Chem. Ber., 93 (1960) 901.
- 40 G. Brauer, Handbuch der präparativen Anorganischen Chemie, 3. Band, F. Enke Verlag, Stuttgart, 1981.
- 41 L. Malvano, Atti della R. Accademia Nazionale dei Lincei 17 (1908) 857.
- 42 Methoden der Organischen Chemie (Houben-Weyl), 4. Auflage, Bd. V/3, S. 326, Georg Thieme Verlag, Stuttgart, 1962.